
eELib

elenia

Feb 09, 2024

CONTENTS

1 About eELib 3

2 Wiki 7

3 API Reference 45

4 Disclaimer / Authors 47

5 Indices and tables 49

Index 51

i

ii

eELib

The eELib (elenia Energy Library) is the software tool for simulations concerning future power systems for pro-
sumers. The library with its functionalities and models can be used for various simulative investigations regarding
research or current challenges in the field of a distributed electrical power system.

The goal of the eELib is creating a model library that is suitable for solving energy-related questions around prosumers
(consumers that are now also producing energy). This includes, among other things, the . . .

• . . . creation and consideration of different energy supply scenarios (on building, district and grid level, among
others with different penetration levels of distributed facilities like PV).

• . . . comparison of different operating strategies for energy management systems, including e.g. variable
tariffs, multi-use concepts, operator models or schedule-based flexibility.

• . . . investigation of the impacts and interactions of prosumer households (e.g., sector coupling and electrifica-
tion) with the power grid to identify violations of grid limits.

• . . . calculating the economic values of different use cases and strategies for components and systems.

• . . . investigation of innovative marketing strategies of market players in the spot and balancing power markets.

CONTENTS 1

eELib

2 CONTENTS

CHAPTER

ONE

ABOUT EELIB

The models in eELib - like other models too - represent the real processes of existing components in a quasi-stationary
/ quasi-dynamic approach under the assumption of simplifications. The implementations of the eELib hold some
characteristics, that will shortly be explained here.

1.1 General Setup

To start a simulation, one has to set up a scenario-file that should look like the test scenarios in the examples folder.
There, one has to set up the models to be used and how to connect them. Data for the models has to additionally be
provided.

1.2 Folder Structure

The model library is in a public Gitlab-Repository.

This is to give an overview of where different parts of the eELib are stored:

• docs : Files for the documentation with AutodocSphinx into the GitLab Pages style. Documentation is stored in
.rst files within the source subfolder.

• eelib : This stores the main part of the elenia Energy Library, as it contains the models and all other functional-
ities.

– core : Here all of the models are stored. This is divided into the components (like PV system or electric
vehicle), control models (like energy management system), grid models (like grid control) and market
models (like intraday market).

– data : This contains all models that are “just” retrieving input data (like a simple csv-reader). It also
includes the functionalities for simulation data to be collected and assessed.

– utils : Contains helper functions and classes.

∗ eval : Here the functionalities for evaluating and plotting/presenting outputs of simulations are stored,
mostly in accessible and modifiable python scripts or jupyter notebooks.

– testing : Contains all of the testing for the models and the whole library.

• examples : This folder gives data and scripts for various test scenarios and should provide an overview of how
the eELib can be used. Data is stored in the data which also contains the simulations results.

The highest folder also contains various files that are used for setup of the environment and gitlab communication.

Familiarize with the folder structure of the eElib package by exploring the API Reference.

3

https://gitlab.com/elenia1/elenia-energy-library

eELib

1.3 Plug-and-Play Style

The programming of the models should be implemented in such a way that it can also be used in real-world applica-
tions without any adjustments. This ensures that, for example, in the case of changed simulation scenarios or also in
laboratory investigations, the same source code can simply be applied within the framework of “plug-and-play”.

1.4 Coupling With mosaik

In order to make the above mentioned investigation cases possible, one needs to couple the different models of the
library in scenarios to be created, e.g. a PV system with the energy management system (EMS). For this purpose,
an orchestrator is to be used, which performs the exchange of data sets between models, calls the calculation of the
individual models and controls the general model flow as well as the coupling with a database. mosaik is intended for
these tasks. Certain input values are assumed, data sets are calculated internally and output data sets are issued. See the
mosaik Doc Part for more information. The eELib should definetily be usable with other orchestrators of a simulation,
but the explanations in this documentation are done for mosaik and its simulation orchestration. Additionally, the eELib
provides simulators to its models that serve the prupose of APIs for a simulation with mosaik.

1.5 Event-Based Simulation

The computations within the eELib are executed in an event-based manner. This implies the process of a simulation to
depend on the triggering of events. Independent of a step_size - the length of a simulation step in seconds - the process
within one simulation step is executed by event triggering, as depicted in the following figure. To add to the explanation
of mosaik, the execution of events depends on the triggering of such events. E.g. the simulation of a BSS is triggered
by an EMS sending a power set value to the BSS. For this, mosaik knows about . . .

• . . . when each model has to be called for calculation.

• . . . which outputs for the models are send to which inputs for other models.

1. mosaik calls the calculation of the entities via the simulator

2. models calculate output with the already given input

3. simulator returns the time, when the models have to be calculated next

4. mosaik sends the output to a connected entity (e.g. the power generation of a PV system to the HEMS)

4 Chapter 1. About eELib

https://mosaik.offis.de/
https://mosaik.readthedocs.io/en/latest/tutorials/sametimeloops.html
https://mosaik.readthedocs.io/en/latest/tutorials/sametimeloops.html

eELib

5. mosaik then calls the calculation of the next entity for which all inputs have been collected (this is done by means
of the word “triggering”, so the finalized calculation of one entity triggers the calculation of another entity. . .)

This is done within a single timestep as long as data is send between the entities such that the renewed calculation of a
model entity is triggered. mosaik calls the execution of the models in the way they are connected to each other and send
values each way. If everything is finished for this timestep, mosaik advances to the next timestep and the simulation
process carries on.

The implementation of the process within one simulation step can be better seen in the next figure. It is shown, that
when a model is called, the inputs for the models are provided by mosaik and set by the simulator. Afterwards the
models are stepped and ultimately the simulators are called to extract the (by mosaik requested) result outputs from the
models.

1.5. Event-Based Simulation 5

eELib

6 Chapter 1. About eELib

CHAPTER

TWO

WIKI

The Wiki provides a walkthrough for different tasks, as well as self-aid in case of common questions.

For a detailed start, we recommend fully reading this Wiki. It covers. . .

• Basics - Setup of a programming environment,

• Usage - Guides to configure a scenario and run a simulation,

• Contribution - Introduction to git workflow and adding models/simulators/strategies

• . . . and much more

After fully going through the Wiki section and completing the installation, we recommend to . . .

• . . . familiarize with the folder structure of the eElib package by exploring the API Reference.

• . . . have a look at the test scenarios in the folder examples - esp. test_scenario_building.py - and to
comprehend the processes/procedures.

• . . . run the test_scenario_building.py as declared at the end of the installation guide and try if it
works!

2.1 Installation and Setup

2.1.1 Installation and Setup of Python for working wit eELib

1. Download Python version 3.10.X from https://www.python.org/downloads/

2. When the download is finished, double-click the installer.

3. Select Install for all users and click Next >.

4. The default installation path is okay. Click Next >.

5. In the Customize Python page, click on the Python node and select Entire feature will be installed on local hard
drive. Make sure that Add python.exe to Path is enabled. Click Next >.

• If not, the Python Path has to be added to system variables by hand.

6. When Windows asks you to allow the installation, do so. Wait for it to happen. Click Finish.

Note: This will also install the Python package manager pip. For checking and if not, see https://pip.pypa.io/en/stable/
getting-started/ (can also be used generally for working with pip)

7

https://www.python.org/downloads/
https://pip.pypa.io/en/stable/getting-started/
https://pip.pypa.io/en/stable/getting-started/

eELib

2.1.2 Installation and Setup of Python IDE (VSC)

Easier than using command window or PowerShell is the use of an IDE (integrated development environment) for
Python, especially when working with the code.

1. Decide for an IDE. There are several good options: PyCharm, Visual Studio Code, Jupyter Notebook, IDLE,
Spyder, Pydev

• We recommend Visual Studio Code (VSC) for eELib, so this tutorial will be based on VSC

2. If needed, download VSC from the homepage and install it: https://code.visualstudio.com/

3. Configuration of User Settings

1. If not installed, install the Python Extension under Extensions (Ctrl + Shift + X)

2. Settings -> Extensions -> Python -> Formatting: Provider -> set to “black”

3. Settings -> Text Editor -> Formatting -> Format on Save should be true

4. Settings -> Features -> Notebook -> Format on Save should be true

5. Install the autoDocstring extension the same way as the Python Extension

6. Install the H5Web Extension for a quick look at the HDF5-Simulation-Output

7. For max line lenght of 100 set: Settings -> Editor -> Rulers -> click “Edit in settings.json” and then type
“100” instead of the default “80” (you can directly see the vertical line shift to the right when saving the
settings.json file

2.1.3 Cloning eELib Repository

1. For Git communication, have a look at the page Git Workflow

2. Clone the Git Repository with VSC: When all folders are closed, select Clone (Git) Repository

• https-Address: “https://gitlab.com/elenia1/elenia-energy-library”

3. You can also use GitBash for cloning (for some it seems easier)

$ git clone https://gitlab.com/elenia1/elenia-energy-library

Note: The path to the project folder will now be noted as <Project Folder>.

2.1.4 Working in VSC with eELib

1. Open VSC and navigate to <Project Folder>

2. Open new Terminal: PowerShell is recommended (GitBash or Command Window are possible too, but not as
mighty)

3. Create a virtual environment in the directory of your repository:

1. Run python -m venv <_VENV-PATH_>

• For virtual environment path <_VENV-PATH_>, we typically use .venv

• Accept VSC for acknowledging new environment, if it is detected

2. Run the activation script for Powershell: .\<VENV-PATH>\Scripts\Activate.ps1

8 Chapter 2. Wiki

https://code.visualstudio.com/
https://gitlab.com/elenia1/elenia-energy-library

eELib

• In case Scripts can’t be executed, you have to adjust the Execution Policy by running
Set-ExecutionPolicy Bypass -Scope CurrentUser -Force and try again

• In case you don’t use relative paths, the .\ at the beginning isn’t needed

• (Command window has different activation file ‘activate.bat’)

• Check: If successful, the prompt should now start with (.venv)

• Check whether the correct python interpreter is selected: python --version (Output: Python
3.10.X)

4. Install requirements into the virtual environment

• If VSC explorer isn’t already in the repository folder, you have to navigate there

• Run pip install -r requirements.txt

5. If a new release of pip is available, you can update it via python.exe -m pip install --upgrade pip

6. Check: If you open a Python file, the selected virtual environment is listed in the lower right corner in the blue
row (‘.venv’)

7. Install Configurations for Processes, that are executed before each commit

• Run pre-commit install

2.1.5 Test successfull installation

1. You can test the functionality and correct installation by running a testcase

• Open the file test_scenario_building.py in the examples folder and click on the Run sign in the
upper right corner

• (Or run python test_scenario_building.py in the terminal)

2. If you are not able to run the test_scenario and get the error no module named 'eelib' . . .

If your are in your local project path . . .
execute pip install -e.

Otherwise you have to insert your local project path . . .
execute pip install -e <local project path>

2.2 Git Workflow

This wiki page will give detailed instruction on how to work with the commands in Git, especially via Visual Studio
Code (VSC)! It will not provide a full overview of how the git process works but informs about the necessary commands.

2.2. Git Workflow 9

eELib

2.2.1 1. Create Personal Access Token

1. In Gitlab, via ‘Edit profile’, you go to ‘Access Tokens’ and create a Token.

• The name is irrelevant and the expiration date can be set to a year.

• You can select all scopes.

2. The Token has to be saved somewhere, because you have to give it in order to establish a connection from your
local repository to the online repository.

2.2.2 2. Cloning

The next thing that has to be done is cloning the online Git repository onto your local computer.

1. You can do this via Visual Studio Code by typing in gitcl in the command line and following the processes.

• Use either the URL or SSH-key from the repository.

• When asked for username and password you have to give your GitLab username and the Personal Access
Token.

• This process can also be done via GitBash, when going to the target folder and typing in git clone
<REPO-URL>.

2. It is recommended to end this process by saving the Personal Access Token in this Git project by run-
ning git remote set-url origin https://oauth2:[PersonalAccessToken]@<GIT-REPO> via Git-
Bash, then your Git program will not ask for the Token every time.

3. You should also set your username and mail adress for when using Git by running git config --global
user.name "Your Name" resp. git config --global user.email "youremail@yourdomain.de".

2.2.3 3. Visual Studio Code

• Visual Studio Code allows easy version management via Git.

• You should use the window “Source Control” (left side) to always see the current changes you did on the code.

• When using the Extension Git Graph , you can also have an overview of all the changes that have been done in
the repository (possibly by others too!).

2.2.4 4. Change the Branch

• Before any adaption to the code, you should always check your currently selected branch.

• The default is always the main branch, in which you should not change anything!

• Changing the selected branch can be done by the Command “Source Control -> Branches -> Switch to Another
Branch” and then selecting that specific branch. Or you can use the command check-out to in order to switch
to another branch.

Hint: You can only change the selected branch, when you currently have no changes in the files.

10 Chapter 2. Wiki

https://marketplace.visualstudio.com/items?itemName=mhutchie.git-graph

eELib

2.2.5 5. Saving Changes (Commit)

The next thing is saving changes, that were coded locally - this is done by ‘committing’ the code, which is still a local
process but kind of saves the stage at the moment.

1. You have to “stage” the relevant code files by pressing the “plus” (+) sign.

2. Then type in a fitting commit message (What have you done? Short!).

3. Last thing is to hit the commit button (“check” sign).

2.2.6 6. Getting Changes from Online Repository (Pull)

When others made relevant code changes, which you might need, you can get their changes from the online repository
by “pulling” them.

1. For that you must’t have everything committed - so do that first.

2. To pull the current state of the branch from the online repository, simply click on the 3 points and select “Pull”.

3. In case any merge conflicts occur, see step 8. Merge Changes

2.2.7 7. Sending Changes to Online Repository (Push)

• When having implemented relevant code changes, which other programmers/users might need, AFTER VALI-
DATING THEM you can (and should regularly) push your saved commits.

• This should only be done after pulling the online repository first.

• Also, all current changes have to be staged.

• To push, simply click on the 3 points and select “Push”.

2.2.8 8. Merge Changes

• Merging Changes is generally needed, when two programmers changed parts of the same code and Git does not
know, which “solutions” it should select.

• This process should be done carefully, as nobody wants to discard changes, that have been done by others.

• Merging can be needed in two cases: when you merge another branch into your own local branch, or when you
pull the online repository status into your local state.

• In the process, click on the files with “Merge Conflicts”, go through the problems and try to find a solution that
approriately takes both solutions into account.

• If you have concerns, ask for help!

• Merges with merge conflicts always have to be committed after the conflicts have been solved, and the file is
saved and staged.

2.2. Git Workflow 11

eELib

2.2.9 9. Create a New Branch for each Topic

The work flow is supposed to include the creation of a new branch for each problem. So in case you want to create a
new model, you create a branch named model/[model_name] and work on this problem only in this branch. Or if
you want to fix something existing, create a branch named bugfix/[problem_name] etc.

This is a way to structurize the current work and additions to the joint use of the library in the main branch.

2.2.10 10. Merge Your Changes into the main Branch

When you

1. completed a task in a specific branch (don’t use the main branch for that!)

2. and tested your stuff,

you can make this accessible for others via the main branch.

For that you should . . .

1. . . . merge the current state of the main branch into your (feature) branch.

2. . . . push your changes into the remote branch.

3. . . . go to the GitLab Repository and create a merge request for your branch into main. There you should also
assign a developer to shortly check your updates and may even assign a reviewer.

The merge will then be completed and afterwards your changes are also part of the main branch.

2.3 Mosaik

mosaik, according to the mosaik documentation is a “flexible Smart Grid co-simulation framework”. It can combine
various existing models to run large-scale scenarios - and this is what we intend it for in our use. mosaik can combine
our prosumer models like electric vehicles, energy management systemens, grid calculations, and all the others. While
we in our eELib focus on the implementation of power system models and energy management strategies, mosaik is
used for simulatory behaviour.

For introduction to mosaik you can or should have a look at its tutorial. Recommended articles of this tutorial for the
use within the eELib are:

1. Integrating a simulation model into the mosaik ecosystem

2. Creating and running simple simulation scenarios

Some more articles that could prove helpful:

1. Adding a control mechanism to a scenario

2. Integrating a control mechanism

12 Chapter 2. Wiki

https://mosaik.readthedocs.io/en/latest/
https://mosaik.readthedocs.io/en/latest/tutorials/index.html

eELib

2.4 Configure a Scenario With an Excel File

Caution: Still WIP and might not work.

2.4.1 Excel-file setup

1. Open Excel-file (eelib\utils\simulation_setup\sim_config_data.xlsx). This one is part of the
utils package.

2. The sheets bus, load, ext_grid, trafo, line, sgen, storage are used to configure the grid.

3. To add a new entity to the grid you create a new row and include the index name and the init_vals of the element.
More information about the characteristics of the grid elements: https://pandapower.readthedocs.io/en/v2.13.1/
elements.html

(Make sure you have at least one transformer, one external grid and buses are connected through lines)

4. After configurating the grid you can add the model entities.

1. Open the sheet ems and define the number of ems and connect them to a bus

2. Households, charging stations or pv can be connected to a bus too (but only one per bus)

3. Adding a new entitiy of a model type is similar to add a new grid element (important is to set the connection
to an ems or a bus and differentiate between csv_reader model or exact mode type

4. Now set the init_vals for every entity of the model type

2.4. Configure a Scenario With an Excel File 13

https://pandapower.readthedocs.io/en/v2.13.1/elements.html
https://pandapower.readthedocs.io/en/v2.13.1/elements.html

eELib

2.4.2 Create .json files for scenario

1. Open jupyter notebook eelib\\utils\\simulation_setup\\script_sim_setup.ipynb

2. Run the corresponding cells to import the packages and set the input and output paths:

To create a grid

1. Read the sheets from the excel file

2. Run the “create grid data file” cell

3. An image of the grid is shown underneath and the .json-file is safed at C:/Users/Puplic/
Documents

To create model data file

1. Read the model type sheets frome the excel file

2. Run “create model data file” cell

3. .json-file is safed at C:/Users/Public/Documents

To create connection file

1. Run the cell “Create model_grid_config file”

2. File is safed at C:/Users/Public/Documents

3. Now run a scenario file from examples folder, e.g. test_scenario_grid or test_scenario_building

2.4.3 Add a completely new model type

1. Create a new sheet for the model type in the excel file

2. Create entities and set the init_vals and the connection to a bus or ems for the new model type

3. Open the jupyter notebook eelib\\utils\\simulation_setup\\script_sim_setup.ipynb

1. Read the new excel sheet

df_new_model_type = pd.read_excel(FILE_SCENARIO_INPUT, sheet_name="new_model_
→˓type", index_col=0)

2. Add new model entities to model_data file (if necessery differentiate between exact- and csv-model)

#create an empty list for the new model type
new_model_type = []
for i in df_new_model_type.index:
Add all init_vals for model type

new_model_type_data = {
"datafile": df_new_model_type.at[i, "datafile"],
"start_time": df_new_model_type.at[i, "start_time"],
"date_format": df_new_model_type.at[i, "date_format"],
"header_rows": int(df_new_model_type.at[i, "header_rows"]),

}
new_model_type.append(new_model_type_data)

add new model type list to dictionary
model_data= { ...

new_model_type : new_model_type
}

14 Chapter 2. Wiki

eELib

3. Add new model type to model_grid_config file

create an empty list for the new model type
new_model_types = []
loop over all entities
for j in df_new_model_type.index:

if the entity is connected with bus or ems the name of the entity is␣
→˓added to the list new_model_types

if df_loads.at[i, "bus"] == df_new_model_type.at[j, "bus"] or ems_idx ==␣
→˓df_new_model_type.at[j, "ems"]:

new_model_type = df_new_model_type.at[j, "name"]
new_model_types.append(new_model_type)

add new model type list to dictionary
elements = {...

new_model_type: new_model_types
}

4. Now run the cells to create new .json files

2.5 Set Up and Run a Simulation

2.5.1 What files are needed for a simulation?

Scenario script

Start the simulators, build the models, create the connections and start mosaik. Exemplary scripts for building, grid
etc. can be found in the examples folder.

Model data file

Information on number of models and their parameterization.

Listing 1: examples/data/model_data_scenario/model_data_building.json
(01/24)

1 {
2 "ems": [
3 {
4 "strategy": "HEMS_default",
5 "cs_strategy": "balanced"
6 }
7],
8 "HouseholdCSV": [
9 {

10 "p_rated": 4500,
11 "p_rated_profile": 4000,
12 "cos_phi": 1.0,
13 "datafile": "examples/data/load/4_persons_profile/load_34.csv",
14 "date_format": "YYYY-MM-DD HH:mm:ss",
15 "header_rows": 2,
16 "start_time": "2014-01-01 00:00:00"

(continues on next page)

2.5. Set Up and Run a Simulation 15

eELib

Fig. 1: examples/test_scenario_building.py (01/24)

16 Chapter 2. Wiki

eELib

(continued from previous page)

17 }
18],
19 ...

Model connections

• Connections between grid buses and the ems models (or directly the devices)

• Connections between ems and the devices

Listing 2: examples/data/grid/grid_model_config.json (01/24)

1 {
2 "0-load_1_1": {
3 "ems": "HEMS_default_0",
4 "load": [
5 "HouseholdCSV_0"
6],
7 "household_thermal": [],
8 "pv": [],
9 "bss": [],

10 "hp": [],
11 "cs": [
12 "ChargingStation_0"
13],
14 "ev": [
15 "EV_0"
16]
17 },
18 "0-load_1_2": {
19 "ems": "HEMS_default_1",
20 "load": [
21 "HouseholdCSV_1"
22],
23 ...

Grid file

In .json format (possibly created via pandapower)

Listing 3: examples/data/grid/example_grid_kerber.json (01/24)

1 {
2 "_module": "pandapower.auxiliary",
3 "_class": "pandapowerNet",
4 "_object": {
5 "bus": {
6 "_module": "pandas.core.frame",
7 "_class": "DataFrame",
8 "_object": "{\"columns\":[\"name\",\"vn_kv\",\"type\",\"zone\",\"in_service\"],\

→˓"index\":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17],\"data\":[[\"Trafostation_OS\",
(continues on next page)

2.5. Set Up and Run a Simulation 17

eELib

(continued from previous page)

→˓10.0,\"b\",null,true],[\"main_busbar\",0.4,\"b\",null,true],[\"MUF_1_1\",0.4,\"n\",
→˓null,true],[\"loadbus_1_1\",0.4,\"b\",null,true],[\"KV_1_2\",0.4,\"b\",null,true],[\
→˓"loadbus_1_2\",0.4,\"b\",null,true],[\"MUF_1_3\",0.4,\"n\",null,true],[\"loadbus_1_3\",
→˓0.4,\"b\",null,true],[\"KV_1_4\",0.4,\"b\",null,true],[\"loadbus_1_4\",0.4,\"b\",null,
→˓true],[\"MUF_1_5\",0.4,\"n\",null,true],[\"loadbus_1_5\",0.4,\"b\",null,true],[\"KV_1_
→˓6\",0.4,\"b\",null,true],[\"loadbus_1_6\",0.4,\"b\",null,true],[\"MUF_2_1\",0.4,\"n\",
→˓null,true],[\"loadbus_2_1\",0.4,\"b\",null,true],[\"KV_2_2\",0.4,\"b\",null,true],[\
→˓"loadbus_2_2\",0.4,\"b\",null,true]]}",

9 "orient": "split",
10 "dtype": {
11 "name": "object",
12 "vn_kv": "float64",
13 "type": "object",
14 "zone": "object",
15 "in_service": "bool"
16 }
17 },
18 ...

Tip: All files can be created (more easily) with a Scenario Configurator (.ipynb) via an excel file. Or use existing
files and adapt the parameterization.

2.5.2 Configuration of a Scenario Script

Note: All of these code-blocks derive from examples/test_scenario_building.py as of (01/24) if not stated
otherwise.

Setup

Listing 4: import of used packages

8 import os
9 import json

10 import mosaik
11 import mosaik.util
12 import eelib.utils.simulation_helper as sim_help
13 from eelib.model_connections.connections import get_default_connections
14 from eelib.utils.logging_helpers import set_console_logger
15 import arrow
16 import logging

Listing 5: Setting of paths for simulation data and used model simulators

27 # define paths and filenames
28 DIR = sim_help.get_default_dirs(

(continues on next page)

18 Chapter 2. Wiki

eELib

(continued from previous page)

29 os.path.realpath(os.path.dirname(__file__)), scenario="building", grid=None, format_
→˓db="hdf5"

30)

Listing 6: Define simulators and models for the simulation

37 # Sim config.: Simulators and their used model types with the properties to store into DB
38 SIM_CONFIG = {
39 # used database, will be left out for model creation and connections
40 "DBSim": {"python": "eelib.data.database.hdf5:Hdf5Database"},
41 # all the used simulators and their models for this simulation
42 "EMSSim": {
43 "python": "eelib.core.control.EMS.EMS_simulator:Sim",
44 "models": {"ems": ["p_balance", "q_balance", "p_th_balance", "p_th_dem"]},
45 },
46 "CSVSim": {
47 "python": "eelib.data.csv_reader.csv_reader_simulator:Sim",
48 "models": {
49 "HouseholdCSV": ["p", "q"],
50 "PvCSV": ["p", "q"],
51 "ChargingStationCSV": ["p", "q"],
52 "HeatpumpCSV": ["p_el", "q_el"],
53 "HouseholdThermalCSV": ["p_th_room", "p_th_water"],
54 },
55 },
56 ...

Listing 7: Configure time/steps, model data and conncetions and hand
SIM_CONFIG to mosaik

82 # Configuration of scenario: time and granularity
83 START = "2020-01-01 00:00:00"
84 END = "2020-01-04 00:00:00"
85 STEP_SIZE_IN_SECONDS = 900 # 1=sec-steps, 3600=hour-steps, 900=15min-steps, 600=10min-

→˓steps
86 N_SECONDS = int(
87 (
88 arrow.get(END, "YYYY-MM-DD HH:mm:ss") - arrow.get(START, "YYYY-MM-DD HH:mm:ss")
89).total_seconds()
90)
91 N_STEPS = int(N_SECONDS / STEP_SIZE_IN_SECONDS)
92 scenario_config = {
93 "start": START, # time of beginning for simulation
94 "end": END, # time of ending
95 "step_size": STEP_SIZE_IN_SECONDS,
96 "n_steps": N_STEPS,
97 "bool_plot": False,
98 }
99

100 # Read Scenario file with data for model entities
101 with open(DIR["MODEL_DATA"]) as f:

(continues on next page)

2.5. Set Up and Run a Simulation 19

eELib

(continued from previous page)

102 model_data = json.load(f)
103

104 # Read configuration file with data for connections between prosumer devices
105 model_connect_config = get_default_connections()
106

107 # Create world
108 world = mosaik.World(SIM_CONFIG, debug=True)

Start Simulators

Listing 8: Simulators for the used models

120 # start all simulators/model factories with mosaik for data given in SIM_CONFIG
121 dict_simulators = sim_help.start_simulators(
122 sim_config=SIM_CONFIG, world=world, scenario_config=scenario_config
123)

Initiate Models

Listing 9: Create and collect the model entities for each device type

133 # create all models based on given SIM_CONFIG
134 dict_entities = sim_help.create_entities(
135 sim_config=SIM_CONFIG, model_data=model_data, dict_simulators=dict_simulators
136)

Connect Entities

Listing 10: The connections for each entity are listed in
model_connect_config. Now tell mosaik.

143 # connect all models to each other
144 sim_help.connect_entities(
145 world=world,
146 dict_entities=dict_entities,
147 model_connect_config=model_connect_config,
148 dict_simulators=dict_simulators,
149)

20 Chapter 2. Wiki

eELib

Run Simulation

161 world.run(until=scenario_config["n_steps"], print_progress=True)

2.5.3 Running a simulation

• You can run one of the test_scenario s in the examples folder
building: Just one single building to see the operation of devices inside the household.

grid: Simple low voltage grid (2 feeders with six resp. two household connection points) to get an esti-
mation of the impact of different operating strategies on the local grid.

multi_fam_house: TBD

residential_district: TBD

• Adapting the parameterization in the simulation files can yield quite different results.

• Running one of the simulations will create a .hdf5 results data file in the folder /examples/results.

• You can view the information of this file via the H5Web Extension in Microsoft VSC and plot the profiles (stored
under Series and the name of the corresponding simulator) of the used devices.

2.5.4 Create your own simulation

1. Copy one of the test scenarios and delete all of the redundant simulators/devices/connections.

2. Set up corresponding model (and grid) data as well as a model configuration file.

2.6 Configuration of a Model

This page explains the structure of a model.py to enable you to create your own models. The model.py defines the
properties and methods of instances of the respective model. Within a scenario, you may have multiple e.g. electric
vehicles with differing property values, configured within the model_data.json. A model.py is always paired with
a simulator.py.

Note: All code-blocks derive from charging_station_model.py as of (01/24) if not stated otherwise.

2.6.1 Introduction and imports

Listing 11: Basic explanation about the models and import relevant
packages.

1 """
2 eElib charging station model is built to manage the charging processes of EVs.
3

4 Author: elenia@TUBS
5 """
6

7 import warnings
(continues on next page)

2.6. Configuration of a Model 21

https://marketplace.visualstudio.com/items?itemName=h5web.vscode-h5web

eELib

(continued from previous page)

8 import math
9

10 from eelib.utils.ancillary_services.voltage_control_concepts import cos_phi_fix

2.6.2 Class definition

Listing 12: Short explanation, listing of parameters with their allowed
values for initialization (+ method to return them)

13 class ChargingStation:
14 """Models a charging station for electric vehicles of different types."""
15

16 # Valid values and types for each parameter
17 _VALID_PARAMETERS = {
18 "p_rated": {"types": [int], "values": (0, math.inf)},
19 "output_type": {"types": [str], "values": ["AC", "DC"]},
20 "charge_efficiency": {"types": [float, int], "values": (0, 1)},
21 "discharge_efficiency": {"types": [float, int], "values": (0, 1)},
22 "cos_phi": {"types": [float, int], "values": (0, 1)},
23 }
24

25 @classmethod
26 def get_valid_parameters(cls):
27 """Returns dictionary containing valid parameter types and values.
28

29 Returns:
30 dict: valid parameters for this model
31 """
32 return cls._VALID_PARAMETERS

2.6.3 Initialization of model properties

Listing 13: To initialize static properties and input-output-values of the
model (to not set them in init function)

34 # dynamic INPUT properties
35 appearance = {} # Identifier if car at station [-]
36 e_bat = {} # Actual charging level [kWh]
37 e_bat_max = {} # Maximal capacity [kWh]
38 p_charge_max = {} # Maximal charging active power [W]
39 p_discharge_max = {} # Maximal discharging active power [W]
40 appearance_end_step = {} # index for ending point of standing time [-]
41 bev_consumption_period = {} # Electricity consumption of EV in next period not being␣

→˓home,
42

43 # control signals & charging strategy values
(continues on next page)

22 Chapter 2. Wiki

eELib

(continued from previous page)

44 p_set = {} # active power set-point [W]
45

46 # dynamic OUTPUT properties
47 p = 0 # Active Power (after control) [W]
48 q = 0 # Reactive Power (after control) [W]
49 p_device = {} # active power for every vehicle [W]
50 p_min = 0 # Minimal active Power [W]
51 p_max = 0 # Maximal active Power [W]
52

53 efficiency = 1.0 # efficiency of the current time step for the charging station

2.6.4 Initialization method __init__()

Listing 14: takes parameter values as inputs

55 def __init__(
56 self,
57 ename: str,
58 p_rated: int,
59 output_type: str = "AC",
60 charge_efficiency: float = 0.99,
61 discharge_efficiency: float = 0.99,
62 cos_phi: float = 1.0,
63 step_size=60 * 15, # step size in seconds
64):

Listing 15: creates entity of this model

78 # Set attributes of init_vals to static properties
79 self.ename = ename
80 self.p_rated = p_rated # rated active power (AC/DC) [W]
81 self.output_type = output_type # source AC/DC [-]
82 self.discharge_efficiency = discharge_efficiency # discharging efficiency [-]
83 self.charge_efficiency = charge_efficiency # charging efficiency [-]
84 self.cos_phi = cos_phi
85

86 # edit efficiency rates
87 if self.output_type == "AC" and (charge_efficiency != 1.0 or discharge_efficiency !=␣

→˓1.0):
88 self.charge_efficiency = 1
89 self.discharge_efficiency = 1
90 warnings.warn(
91 "WARNING: Efficiency of AC charging is instead set to 1!",
92 UserWarning,
93)
94

95 # save time step length and current time step
96 self.step_size = step_size
97 self.time = 0

2.6. Configuration of a Model 23

eELib

2.6.5 Model methods

Listing 16: Type-specific function like calculation of power limits, aging,
efficiency, adaption of stored energy etc.

99 def _calc_power_limits(self):
100 """Calculate the power limits for the charging station with the input thats coming␣

→˓from the
101 electric vehicles.
102

103 Raises:
104 ValueError: If the power limits of at least one connected ev do not work␣

→˓together.
105 """
106

107 # current efficiency depending on the direction of power flow
108 self._calc_current_efficiency()
109

110 # in case no ev is connected to cs - no active power flexibility
111 self.p_min = 0
112 self.p_max = 0
113 for ev_id, ev_appearance in self.appearance.items():
114 # check for each ev if connected - consider their limits, efficiency and nominal␣

→˓power
115 if ev_appearance:
116 # check if min. and max. power are correct
117 if self.p_discharge_max[ev_id] > self.p_charge_max[ev_id]:
118 raise ValueError(f"Min. and max. power of ev {ev_id} do not comply.")
119 # handle the power limits
120 self.p_min = max(
121 self.p_min + self.p_discharge_max[ev_id] / self.efficiency,
122 -self.p_rated,
123)
124 self.p_max = min(
125 self.p_max + self.p_charge_max[ev_id] / self.efficiency,
126 self.p_rated,
127)
128 ...

24 Chapter 2. Wiki

eELib

2.6.6 step() method

The step() method of storage_model.py (01/24).

Listing 17: For handling of the processes of the model within a time step

226 def step(self, time):
227 """Performs simulation step of eELib battery model.
228 Calculates all of the Dynamic Properties based on the Input Properties.
229

230 Args:
231 time (int): Current simulation time
232 """

Listing 18: At first: Handling of a new time step (if entity was called for
first time, do some processes once, like adapting energy)

233 # handle current time step
234 if not self.time == time:
235 self.time = time
236

237 # adapt energy content from last time step (+ self-discharge)
238 e_bat_self_discharge = -(self.e_bat * self.loss_rate) * (
239 self.step_size / (60 * 60 * 24 * 30)
240)
241 if self.p >= 0: # charging
242 self.e_bat_step_volume = (
243 self.p * self.charge_efficiency * (self.step_size / 3600) + e_bat_self_

→˓discharge
244)
245 else: # discharging
246 self.e_bat_step_volume = (
247 self.p / self.discharge_efficiency * (self.step_size / 3600)
248 + e_bat_self_discharge
249)
250 self.e_bat += self.e_bat_step_volume
251

252 # Calculate battery cycles
253 self.bat_cycles += abs(self.e_bat_step_volume / self.e_cycle)
254

255 # Calculate battery state of health and aging properties
256 if self.status_aging:
257 self.__calculate_aging_status()

Listing 19: Call model-specific methods in supposed order

259 # Set active power and energy within limits
260 self.__set_power_within_limit()
261 self.__set_energy_within_limit()
262 self.soc = self.e_bat / self.e_bat_usable
263

264 self.__calc_charging_efficiency()
265

(continues on next page)

2.6. Configuration of a Model 25

eELib

(continued from previous page)

266 self.__calc_power_limits()

2.6.7 Checklist for adding / enhancing a model

What changes?

adapting current implementation?
Try to make use of the existing properties and methods of the model

adding new implementation (e.g. new method) or need for new properties?

1. Add the part of code to the model

2. Write proper comments and documentation (docstrings for every method!)

3. Write a corresponding test function!

New packages have been added?
add them to the requirements.txt file

Where to add?

New model attributes need to be . . .

1. . . . added to the META of the simulator.

2. If they are also input data, add them to the model_data of the test scenarios (examples/data/
model_data_scenario) as well as the VALID_PARAMETERS of the model.

New connections between properties of different models . . .
. . . need to be integrated to the model_connections/model_connect_config.json file, simply paste them
in the direction of the connection.

New models need to be integrated . . .

1. . . . into the test scenario scripts (in the SIM_CONFIG).

2. . . . into the model_data of the test scenarios (examples/data/model_data_scenario).

3. . . . into the model_connections/model_connect_config.json file with their connec-
tions to/from other models. If the direction of the connection is of importance, there
may be a need to adapt the simulation_helper functions connect_entities() and
connect_entities_of_two_model_types().

4. . . . into the simulator META data.

5. . . . with a unit test file that checks all the relevant model functionalities.

26 Chapter 2. Wiki

eELib

2.7 Configuration of a Simulator

This page explains the structure of a simulator.py to enable you to create your own simulators. The simulator.
py stores information about the connected models and mediates between them and mosaik (e.g. passing the order to
step() as well as associated values). As there may be multiple instances of a model connected to a single simulator,
you only need one simulator of a type per scenario, set within the SIM_CONFIG of scenario file. A simulator.py is
always paired with a model.py.

Note: All code-blocks derive from charging_station_simulator.py as of (01/24) if not stated otherwise.

2.7.1 Introduction and imports

Listing 20: Basic explanation import of relevant packages

1 """
2 Mosaik interface for the eELib charging station model.
3 Simulator for communication between orchestrator (mosaik) and charging station entities.
4

5 Author: elenia@TUBS
6 """
7

8 import mosaik_api_v3
9 from eelib.core.devices.charging_station import charging_station_model

10 import eelib.utils.validation as vld
11 from copy import deepcopy

2.7.2 Listing of model META

Listing 21: State of simulator (whether it is time-discrete or event-
based/hybrid)

17 META = {
18 "type": "hybrid",

Listing 22: Listing of ALL attributes for each modeltype: At first, all
attributes . . .

19 "models": {
20 "ChargingStation": {
21 "public": True,
22 "params": ["init_vals"],
23 "attrs": [
24 "type",
25 "output_type",
26 "step_size",
27 "time",
28 ...

2.7. Configuration of a Simulator 27

eELib

Listing 23: . . . input attributes also listed in "trigger" list . . .

46 "trigger": [
47 "p_set",
48 "e_bat",
49 "e_bat_max",
50 "p_charge_max",
51 "p_discharge_max",
52 "appearance",
53 "appearance_end_step",
54 "bev_consumption_period",
55], # input attributes

Listing 24: . . . output attributes also listed in ""non-persistent"
list.

56 "non-persistent": [
57 "p_min",
58 "p_max",
59 "appearance_end_step",
60 "p_device",
61 "p",
62 "discharge_efficiency",
63 "charge_efficiency",
64 "e_bat",
65 "e_bat_max",
66], # output attributes

2.7.3 Initialization of simulator class

Listing 25: Short explanation as well as constructor __init__ for this
simulator and the initialization function init()

72 class Sim(mosaik_api_v3.Simulator):
73 """Simulator class for eELib charging station model.
74

75 Args:
76 mosaik_api_v3 (module): defines communication between mosaik and simulator
77

78 Raises:
79 ValueError: Unknown output attribute, when not described in META of simulator
80 """
81

82 def __init__(self):
83 """Constructs an object of the Charging-Station:Sim class."""
84

85 super(Sim, self).__init__(META)
86

87 # storing of event-based output info (for same-time loop or next time step)
(continues on next page)

28 Chapter 2. Wiki

eELib

(continued from previous page)

88 self.output_cache = {}
89

90 # initiate empty dict for model entities
91 self.entities = {}
92

93 def init(self, sid, scenario_config, time_resolution=1.0):
94 """Initializes parameters for an object of the Charging-Station:Sim class.
95

96 Args:
97 sid (str): Id of the created instance of the simulator (e.g. CSSim-0)
98 scenario_config (dict): scenario configuration data, like resolution or step␣

→˓size
99 time_resolution (float): Time resolution of current scenario.

100

101 Returns:
102 meta: description of the simulator
103 """
104

105 # assign properties
106 self.sid = sid
107 self.scenario_config = scenario_config
108

109 return self.meta

Following are the so called core functions create(), step() and get_data() that are found in every simulator.
py.

Caution: All core functions of the simulators are called by mosaik and should not be deleted!

2.7.4 Creation of model entities in create()

Listing 26: Core functions should also be labeled in their docstring

111 def create(self, num, model_type, init_vals):
112 """Creates entities of the eELib charging station model.
113 Core function of mosaik.
114

115 Args:
116 num (int): Number of cs models to be created
117 model_type (str): type of created instance (e.g. "charging_station")
118 init_vals (list): list with initial values for each charging_station entity
119

120 Returns:
121 dict: created entities
122 """

2.7. Configuration of a Simulator 29

eELib

Listing 27: Creation of entities by assigning individual entity names and
calling the initialization method of that model type

124 # generated next unused ID for entity
125 next_eid = len(self.entities)
126

127 # create empty list for created entities
128 entities_orchestrator = []
129

130 for i in range(next_eid, next_eid + num):
131 # create entity by specified name and ID
132 ename = "%s%s%d" % (model_type, "_", i)
133 full_id = self.sid + "." + ename
134

135 # get class of specific model and create entity with init values after validation
136 entity_cls = getattr(charging_station_model, model_type)
137 vld.validate_init_parameters(entity_cls, init_vals[i])
138 entity = entity_cls(
139 ename,
140 **init_vals[i],
141 step_size=self.scenario_config["step_size"],
142)

Listing 28: Simulator stores information about the entities

144 # add info to the simulators entity-list and current entities
145 self.entities[ename] = {
146 "ename": ename,
147 "etype": model_type,
148 "model": entity,
149 "full_id": full_id,
150 }
151 entities_orchestrator.append({"eid": ename, "type": model_type})
152

153 return entities_orchestrator

2.7.5 Stepping of models in step()

The step() method of storage_simulator.py (01/24).

Listing 29: First take input data (from mosaik) and set values of entities

175 # assign property values for each entity and attribute with entity ID
176 # process input signals: for the entities (eid), attr is a dict for attributes to be set
177 for eid, attrs in inputs.items():
178 # for the attributes (attr), setter is a dict for entities with corresponding set␣

→˓values
179 for attr, setter in attrs.items():
180 # for transmitter (eid_setter), value_dict contains set values (with ids, when␣

→˓dict)
(continues on next page)

30 Chapter 2. Wiki

eELib

(continued from previous page)

181 setting_value_dict = deepcopy(getattr(self.entities[eid]["model"], attr))
182 for eid_setter, value_dict in setter.items():
183 if isinstance(value_dict, dict):
184 # go by each id and search for corresponding entity id
185 for getter_id, value in value_dict.items():
186 if eid in getter_id:
187 setting_value_dict[eid_setter] = value
188 # value_dict is not a dict, only a single value -> write directly
189 elif isinstance(value_dict, (float, int)):
190 setting_value_dict[eid_setter] = value_dict
191 else:
192 raise TypeError("Unknown format for value_dict")
193 setattr(self.entities[eid]["model"], attr, setting_value_dict)
194

195 # check if there is more than one power set value - otherwise directly set it
196 if attr == "p_set":
197 if len(setting_value_dict) > 1:
198 raise ValueError("There is more than one power set value for " + eid)

Listing 30: Then simply step each model for this time step

200 # call step function for each entity in the list
201 for ename, entity_dict in self.entities.items():
202 entity_dict["model"].step(time)

Note: You might return the next timestep for when this model should be called again.

2.7.6 Handling of output data in get_data()

Listing 31: From a defined set of output properties, the values of the
transmitting entities are read and stored into data dict

233 for transmitter_ename, attrs in outputs.items():
234 # get name for current entity and create dict field
235 entry = self.entities[transmitter_ename]
236 if transmitter_ename not in self.output_cache:
237 self.output_cache[transmitter_ename] = {}
238

239 # loop over all targeted attributes and check if info is available
240 for attr in attrs:
241 if attr not in self.meta["models"][type(entry["model"]).__name__]["attrs"]:
242 raise ValueError("Unknown output attribute: %s" % attr)
243

244 # create empty field for cache and output data
245 if attr not in self.output_cache[transmitter_ename]:
246 self.output_cache[transmitter_ename][attr] = {}
247

248 output_data_to_save = getattr(entry["model"], attr)

2.7. Configuration of a Simulator 31

eELib

Listing 32: For each time step, the output data is continuously stored and
compared to the lastly sent (output_cache) such that if nothing new is to
be send out, only the time step will be send

291 # check if nothing is to be send out - send output 1 step later to avoid waiting for data
292 if not flag_output_changed:
293 if self.time == self.scenario_config["n_steps"] - 1: # is last time step?
294 data["time"] = self.time + 1
295 else:
296 data = {"time": self.time}

2.8 Implementing an EMS strategy

Energy Management Strategies are handled by Energy Management Systems (EMS). To implement a new strategy,
additions in multiple places are necessary.

2.8.1 1. Adapt the EMS_model.py file and implement the operating strategy

Create a new class that is inheriting from the general HEMS class.

Listing 33: eelib/core/control/EMS/EMS_model.py (01/24)

290 class HEMS_default(HEMS):
291 """Default strategy for Energy Management System.
292 Should be copied and adapted for the use of a specific EMS concept.
293 """
294

295 @classmethod
296 def get_valid_parameters(cls):
297 """Returns dictionary containing valid parameter types and values.
298

299 Returns:
300 dict: valid parameters for this model
301 """
302

303 # use parent's parameter list and modify them for this class
304 result = HEMS.get_valid_parameters().copy()
305 result.update({})
306 return result
307

308 def __init__(self, ename: str, step_size: int = 900, **kwargs):
309 """Initializes the eELib HEMS default model.
310

311 Args:
312 ename (str): name of the entity to create
313 step_size (int): length of a simulation step in seconds
314 **kwargs: initial values for the HEMS entity
315

316 Raises:
317 ValueError: Error if selected strategy does not comply with model type.

(continues on next page)

32 Chapter 2. Wiki

eELib

(continued from previous page)

318 """
319

320 # check given strategy
321 if "strategy" in kwargs.keys() and kwargs["strategy"] != "HEMS_default":
322 raise ValueError("Created a HEMS_default entity with strategy not 'HEMS_

→˓default'!")
323 else:
324 kwargs["strategy"] = "HEMS_default" # set strategy if not already given
325

326 # call init function of super HEMS class
327 super().__init__(ename=ename, step_size=step_size, **kwargs)

Add a step() function that first calls the HEMS step() and afterwards implement the functionalities of your operating
strategy

Listing 34: eelib/core/control/EMS/EMS_model.py (01/24)

329 def step(self, time):
330 """Calculates power set values for each connected component according to the␣

→˓strategy.
331

332 Args:
333 time (int): Current simulation time
334 """
335

336 # execute general processes (aggregation of power values etc.)
337 super().step(time)
338

339 # from here on: execute strategy-specific processes
340 ...

2.8.2 2. Add the strategy and its input to the model_data of the scenarios

Listing 35: examples/data/model_data_scenario/model_data_building.json
(01/24)

1 {
2 "ems": [
3 {
4 "strategy": "HEMS_default",
5 "cs_strategy": "balanced"
6 }
7],
8 ...

2.8. Implementing an EMS strategy 33

eELib

2.8.3 3. Add your EMS class to the model_connections/model_connect_config.json
file

Add the data that is sent out. . .

Listing 36: eelib/model_connections/model_connect_config.json
(01/24)

10 "HEMS_default": {
11 "HouseholdCSV": [],
12 "PvCSV": [],
13 "PVLib": [["p_set_pv", "p_set"]],
14 "PVLibExact": [["p_set_pv", "p_set"]],
15 "BSS": [
16 [
17 "p_set_storage",
18 "p_set"
19]
20],
21 "ChargingStation": [
22 [
23 "p_set_charging_station",
24 "p_set"
25]
26],
27 "ChargingStationCSV": [],
28 "EV": [],
29 "HouseholdThermalCSV": [],
30 "HeatpumpCSV": [],
31 "Heatpump": [
32 [
33 "p_th_set_heatpump",
34 "p_th_set"
35]
36],
37 "grid_load": [["p_balance", "p_w"], ["q_balance", "q_var"]]
38 },

. . . but also to every model, which data is sent to your HEMS!

Listing 37: e.g. but not only the BSS

111 "BSS": {
112 "HEMS_default": [
113 [
114 "p_discharge_max",
115 "p_min"
116],
117 [
118 "p_charge_max",
119 "p_max"
120],
121 [
122 "p",

(continues on next page)

34 Chapter 2. Wiki

eELib

(continued from previous page)

123 "p"
124]
125],
126 "HouseholdCSV": [],
127 "PvCSV": [],
128 "PVLib": [],
129 "PVLibExact": [],
130 "ChargingStation": [],
131 "ChargingStationCSV": [],
132 "EV": [],
133 "HouseholdThermalCSV": [],
134 "HeatpumpCSV": [],
135 "Heatpump": []
136 },

As you can see, also connections that do not share data are added.

2.8.4 4. Add the model with its name and (input/output) attributes to the META of the
EMS_simulator

Listing 38: eelib/core/control/EMS/EMS_simulator.py (01/24)

14 META = {
15 "type": "hybrid",
16 "models": {

50 "HEMS_default": {
51 "public": True,
52 "params": ["init_vals"],
53 "attrs": [
54 "q",
55 "p",
56 "p_max",
57 "p_min",
58 "p_set_storage",
59 "p_set_charging_station",
60 "p_set_pv",
61 "p_balance",
62 "q_balance",
63 "appearance_end_step",
64 "discharge_cs_efficiency",
65 "charge_cs_efficiency",
66 "e_bat_car",
67 "e_bat_max_car",
68 "p_th_room",
69 "p_th_water",
70 "p_th_dem",
71 "p_th_dev",
72 "p_th_balance",

(continues on next page)

2.8. Implementing an EMS strategy 35

eELib

(continued from previous page)

73 "p_th_min",
74 "p_th_max",
75 "p_th_min_on",
76 "p_th_set_heatpump",
77],

2.9 Forecasts and Schedules

Implemented into the eELib is a possibility to calculate a forecast and schedule for devices, EMSs, and the grid.
For this, a forecast model is given to calculate requested forecasts. Additionally, the calculation of schedules can be
implemented in each (control) model.

2.9.1 Integration into scenario

Forecasts and schedules can be integrated into simulations like the examples/test_scenario_***.py files exam-
plarily show. In there, one has to declare the forecast simulator to mosaik via the SIM_CONFIG. Additionally, one has
to set the parameter USE_FORECAST in the scenario configuration to true.

Listing 39: simulator configuration [test_scenario_building.py 01/24]

43 # Sim config.: Simulators and their used model types with the properties to store into DB
44 SIM_CONFIG = {
45 # used database, will be left out for model creation and connections
46 "DBSim": {"python": "eelib.data.database.hdf5:Hdf5Database"},
47 # forecast, will be left out for model creation and connections
48 "ForecastSim": {
49 "python": "eelib.core.control.forecast.forecast_simulator:Sim",
50 "models": {"Forecast": []},
51 },

36 Chapter 2. Wiki

eELib

Listing 40: scenario configuration [test_scenario_building.py 01/24]

93 # Configuration of scenario: time and granularity
94 START = "2020-01-01 00:00:00"
95 END = "2020-01-04 00:00:00"
96 STEP_SIZE_IN_SECONDS = 900 # 1=sec-steps, 3600=hour-steps, 900=15min-steps, 600=10min-

→˓steps
97 USE_FORECAST = True

After this, the forecast simulator and model will be created and the connections to the models will be instantiated.

2.9.2 Forecast Model

The forecast model and its simulator are implemented in the folder eelib/core/control/forecast. The imple-
mented behaviour is quite simple and straight-forward, as all model entities of the simulation are stored within the
forecast entity (as deep-copies) via the add_forecasted_entity() method. This allows to create forecasts by sim-
ply iterating over all requested forecasts for all entities, stepping the model for the requested timesteps and collecting the
values (of the model entity) for the requested time steps. After that, the forecast model simply returns those calculated
forecasts.

Listing 41: forecast calculation [forecast_model.py 01/24]

64 # check if request for a forecast was sent
65 if self.forecast_request == {}:
66 self.forecast = {} # no forecast requested, simply return
67 else:
68 # clear earlier forecasts
69 self.forecast = {}
70

71 # go by all entities to create a forecast for
72 for forecast_getter_id, forecast_req_eid_dict in self.forecast_request.items():
73 # create empty dict for forecasts connected to this request entity
74 self.forecast[forecast_getter_id] = {}
75 # check if no forecast requested
76 if forecast_req_eid_dict == {}:
77 continue
78

79 # go by all forecasted model entities
80 for forecast_eid, forecast_info in forecast_req_eid_dict.items():
81 # check if forecast can be done for this model type
82 if forecast_eid in self.forecast_eid.keys():
83 # create structure for forecast of each attribute for this entity
84 forecast_save = {}
85 for attr in forecast_info["attr"]:
86 forecast_save[attr] = []
87

88 # store the copy of this model entity to execute the stepping
89 entity = self.forecast_eid[forecast_eid]
90

91 # run the model for each time step and collect the calculated attr values
92 for t in forecast_info["t"]:
93 entity.step(t)

(continues on next page)

2.9. Forecasts and Schedules 37

eELib

(continued from previous page)

94 for attr in forecast_info["attr"]:
95 forecast_save[attr].append(getattr(entity, attr))

2.9.3 Integration into (Control) Models

For the forecast model to take effect, the forecasts have to be requested by other models, e.g. the energy management
system. Additionally, the calculated forecasts should afterwards be used for strategic behaviour (in operating strategies).

First of all, the mosaik needs to create a connection between the model and the forecast model. This is done in the
connect_to_forecast() function of the simulation helpers. Here, there is a connection added from EMS to the
forecast model for the forecast_request attribute, while a forecast attribute is send back the other way around.
All other models are simply added to the forecast entity such that forecasts can be calculated.

Listing 42: forecast connection function [simulation_helper.py 01/24]

470 def connect_to_forecast(
471 world: object,
472 dict_entities: dict,
473 dict_simulators: dict,
474 forecast: object,
475 forecast_sim: object,
476):
477 """Create connections for the forecasts to work.
478 Includes mosaik connections to ems model and adding of the model entities to the␣

→˓forecasts list.
479

480 Args:
481 world (object): mosaik world object to orchestrate the simulation process
482 dict_entities (dict): dict of all used model entity objects
483 dict_simulators (dict): dict of all used simulators with their ModelFactory-objects
484 forecast (object): forecast model entity
485 forecast_sim (object): simulator for the forecast model
486 """
487

488 # create connections for each entity of each model type
489 for model_name, ent_list in dict_entities.items():
490 for entity in ent_list:
491 # for ems create connections to forecast entity
492 if "ems" in model_name or "EMS" in model_name:
493 world.connect(entity, forecast, "forecast_request")
494 world.connect(
495 forecast,
496 entity,
497 "forecast",
498 weak=True,
499 initial_data={"forecast": {forecast.full_id: {}}},
500)
501 # for other models (devices) add those entities to the forecast entity list
502 else:
503 forecast_sim.add_forecasted_entity(
504 forecast.eid,

(continues on next page)

38 Chapter 2. Wiki

eELib

(continued from previous page)

505 {entity.full_id: dict_simulators[model_name].get_entity_by_id(entity.eid)}
→˓,

506)

Additionally, forecasts have to be requested by the ems, which should be done only in the corresponding time steps.

Listing 43: forecast request by EMS [EMS_model.py 01/24]

340 # request forecasts if needed
341 if self.use_forecast and self.calc_forecast:
342 self.forecast_request = {}
343 for model_type, entity_list in self.controlled_eid_by_type.items():
344 if model_type in self.forecasted_attrs.keys():
345 # add forecast request for every entity of this model type
346 for e_full_id in entity_list.keys():
347 self.forecast_request[e_full_id] = {
348 "attr": self.forecasted_attrs[model_type],
349 "t": range(self.forecast_start, self.forecast_end),
350 }

Due to the connection by mosaik, the forecasts are calculated and afterwards send back, such that they should be
processed. It is now also possible to calculate schedules with set values for the devices that no forecast can be directly
extracted from (charging station, heatpump, battery).

Listing 44: forecast request by EMS [EMS_model.py 01/24]

352 # CALC SCHEDULE WITH UNCONTROLLED (CSV) DEVICES
353 if self.forecast != {} and self.calc_forecast is True:
354 # calculate the residual load schedule including all not controllable devices
355 schedule_residual_uncontrollable = schedule_help.residual_calc_schedule_

→˓uncontrollable(...)
356

357 # calc schedules for charging station
358 schedule_help.cs_calc_schedule_uncontrolled(...)
359

360 # calc schedules for heatpump
361 th_residual_forecast = schedule_help.thermal_calc_forecast_residual(...)
362 schedule_help.hp_calc_schedule(...)
363

364 # get schedule from battery storage based on residual load schedule
365 schedule_help.bss_calc_schedule(...)

2.10 FAQ & Glossary

2.10.1 FAQ

Where are the instanciated models stored? How is the process with the building of Model-Factories?
examplesim = world.start("ExampleSim", eidprefix="Model")

is an entity of the class mosaik.scenario.ModelFactory and stores the entities of the example scenario within
_sim._inst

2.10. FAQ & Glossary 39

eELib

What can one do in case of an ImportError when running the example scenarios?
pip install -e .

What attributes does a model have?
META of the simulator:

Listing 45: e.g. EMS_simulator.py (01/24)

13 # SIMULATION META DATA
14 META = {
15 "type": "hybrid",
16 "models": {
17 "HEMS": {
18 "public": True,
19 "params": ["init_vals"],
20 "attrs": [
21 "q",
22 "p",
23 "p_max",
24 "p_min",
25 "p_th_room",
26 "p_th_water",
27 "p_th",
28 ...

Optionally, within the model class itself

What inputs does a model have?
VALID_PARAMETERS of the model class:

Listing 46: e.g. EMS_model.py (01/24)

20 # Valid values and types for each parameter that apply for all subclasses
21 _VALID_PARAMETERS = {
22 "strategy": {"types": [str], "values": ["HEMS_default"]},
23 "cs_strategy": {
24 "types": [str],
25 "values": ["max_p", "balanced", "night_charging", "solar_charging"],
26 },
27 "bss_strategy": {
28 "types": [None, str],
29 "values": [None, "reduce_curtailment"],
30 },
31 }

model_data of the test scenarios exemplary set these parameters and init values:

Listing 47: e.g. model_data_building.json (01/24)

1 {
2 "ems": [
3 {
4 "strategy": "HEMS_default",
5 "cs_strategy": "balanced"
6 }

(continues on next page)

40 Chapter 2. Wiki

eELib

(continued from previous page)

7],

What connections does a model have?
See the model_connections/model_connect_config.json file, where the FROM-TO-CONNECTIONS are
given for each model type of the eELib:

Listing 48: e.g. model_connect_config.json (01/24)

10 "HEMS_default": {
11 "HouseholdCSV": [],
12 "PvCSV": [],
13 "PVLib": [["p_set_pv", "p_set"]],
14 "PVLibExact": [["p_set_pv", "p_set"]],
15 "BSS": [
16 [
17 "p_set_storage",
18 "p_set"
19]
20],
21 "ChargingStation": [
22 [
23 "p_set_charging_station",
24 "p_set"
25]
26],
27 "ChargingStationCSV": [],
28 "EV": [],
29 "HouseholdThermalCSV": [],
30 "HeatpumpCSV": [],
31 "Heatpump": [
32 [
33 "p_th_set_heatpump",
34 "p_th_set"
35]
36],
37 "grid_load": [["p_balance", "p_w"], ["q_balance", "q_var"]]
38 },

Listing 49: e.g. model_connect_config.json (01/24)

111 "BSS": {
112 "HEMS_default": [
113 [
114 "p_discharge_max",
115 "p_min"
116],
117 [
118 "p_charge_max",
119 "p_max"
120],
121 [
122 "p",

(continues on next page)

2.10. FAQ & Glossary 41

eELib

(continued from previous page)

123 "p"
124]
125],
126 "HouseholdCSV": [],
127 "PvCSV": [],
128 "PVLib": [],
129 "PVLibExact": [],
130 "ChargingStation": [],
131 "ChargingStationCSV": [],
132 "EV": [],
133 "HouseholdThermalCSV": [],
134 "HeatpumpCSV": [],
135 "Heatpump": []
136 },

BSS sends p, p_min and p_max to HEMS and recieves p_set.

2.10.2 Glossary

Fig. 2: This illustrates the different units participating in a simulation.

Orchestrator
Mosaik: Coordination of the whole simulation and model coupling.

Simulator
API for communication between orchestrator and the entities of the specific model.

Entity
Created instance of a model type. In “ename”, “etype”, “eid” etc. the “e” stands for entity.

PSC
We use the passive sign convention (german: Verbraucherzählpfeilsystem), therefore loads are positive while

42 Chapter 2. Wiki

eELib

generation is negative.

Forecast
Prediction of a behaviour for a defined time horizon in the future, e.g. power values for the upcoming 24h steps
for a household base load from a csv reader.

Schedule
Calculated set values for a defined time horizon in the future, e.g. target power values for the upcoming 24h steps
for a battery storage system.

2.10.3 Parameters used in test scenarios

start_time
simulation starting time (e.g. 2023-01-01 00:00:00)

n_steps
number of steps that should be simulated (for time-based calculations only) (e.g. 96 steps for a day with 15 min
time steps)

step_size
length of one (pre-defined) time step (e.g. 15 min = 15*60 sec = 900 sec)

end_time
simulation ending time (e.g. 2023-12-31 23:59:59)

2.10.4 Units

Make use of the SI-units!!

• Power: W

• Time (e.g. simulation time): s

• Energy: Wh

• . . .

2.10. FAQ & Glossary 43

https://en.wikipedia.org/wiki/International_System_of_Units

eELib

44 Chapter 2. Wiki

CHAPTER

THREE

API REFERENCE

The API reference provides detailed descriptions of eElib’s classes and methods. This is taken from the implementa-
tions of the models, which can be taken from the public Gitlab-Repository <https://gitlab.com/elenia1/elenia-energy-
library>.

45

eELib

46 Chapter 3. API Reference

CHAPTER

FOUR

DISCLAIMER / AUTHORS

Author: elenia@TUBS

Copyright 2024 elenia

The eELib is free software under the terms of the GNU GPL Version 3.

47

mailto:elenia@TUBS

eELib

48 Chapter 4. Disclaimer / Authors

CHAPTER

FIVE

INDICES AND TABLES

• genindex

• modindex

49

eELib

50 Chapter 5. Indices and tables

INDEX

E
end_time, 43
Entity, 42

F
Forecast, 43

N
n_steps, 43

O
Orchestrator, 42

P
PSC, 42

S
Schedule, 43
Simulator, 42
start_time, 43
step_size, 43

51

	About eELib
	General Setup
	Folder Structure
	Plug-and-Play Style
	Coupling With mosaik
	Event-Based Simulation

	Wiki
	Installation and Setup
	Installation and Setup of Python for working wit eELib
	Installation and Setup of Python IDE (VSC)
	Cloning eELib Repository
	Working in VSC with eELib
	Test successfull installation

	Git Workflow
	1. Create Personal Access Token
	2. Cloning
	3. Visual Studio Code
	4. Change the Branch
	5. Saving Changes (Commit)
	6. Getting Changes from Online Repository (Pull)
	7. Sending Changes to Online Repository (Push)
	8. Merge Changes
	9. Create a New Branch for each Topic
	10. Merge Your Changes into the main Branch

	Mosaik
	Configure a Scenario With an Excel File
	Excel-file setup
	Create .json files for scenario
	Add a completely new model type

	Set Up and Run a Simulation
	What files are needed for a simulation?
	Scenario script
	Model data file
	Model connections
	Grid file

	Configuration of a Scenario Script
	Setup
	Start Simulators
	Initiate Models
	Connect Entities
	Run Simulation

	Running a simulation
	Create your own simulation

	Configuration of a Model
	Introduction and imports
	Class definition
	Initialization of model properties
	Initialization method __init__()
	Model methods
	step() method
	Checklist for adding / enhancing a model
	What changes?
	Where to add?

	Configuration of a Simulator
	Introduction and imports
	Listing of model META
	Initialization of simulator class
	Creation of model entities in create()
	Stepping of models in step()
	Handling of output data in get_data()

	Implementing an EMS strategy
	1. Adapt the EMS_model.py file and implement the operating strategy
	2. Add the strategy and its input to the model_data of the scenarios
	3. Add your EMS class to the model_connections/model_connect_config.json file
	4. Add the model with its name and (input/output) attributes to the META of the EMS_simulator

	Forecasts and Schedules
	Integration into scenario
	Forecast Model
	Integration into (Control) Models

	FAQ & Glossary
	FAQ
	Glossary
	Parameters used in test scenarios
	Units

	API Reference
	Disclaimer / Authors
	Indices and tables
	Index

